Нормы эхокардиографии и расшифровка результатов

В протоколе исследования сердца присутствуют сокращения, которые понятны только докторам. Человек, не имеющий медицинское образование, вряд ли сможет расшифровать протокол ультразвукового обследования сердца. Но, отталкиваясь от нормативов, можно вполне сделать самостоятельный вывод.

Для миоглобина и гемоглобина характерны разные кривые связывания кислорода

Особые свойства молекулы гемоглобина, которые делают его столь эффективным переносчиком кислорода в крови, легче всего уяснить из сравнения миоглобина и гемоглобина в отношении их сродства к кислороду. На рис. 8-16 показаны кривые насыщения кислородом для гемоглобина и миоглобина, характеризующие степень насыщения этих белков кислородом (т.е. отношение числа участков молекулы, связывающих кислород, к общему числу участков, способных к такому связыванию) в зависимости от парциального давления газообразного кислорода, находящегося в равновесии с раствором белка.

Рис. 8-15. Фоток рафия нормальных эритроцитов человека, полученная при помощи сканирующего электронного микроскопа.

Прежде всего из графика ясно, что миоглобин имеет очень высокое сродство к кислороду: при парциальном давлении кислорода, равном всего лишь 1-2 мм рт. ст., он уже на 50% насыщен кислородом. Кроме того, мы видим, что кривая насыщения миоглобина кислородом имеет вид простой гиперболы, как и следует ожидать из закона действующих масс применительно к равновесной реакции:

При парциальном давлении кислорода, равном 20 мм рт. ст., миоглобин оказывается насыщенным кислородом более чем на 95%. В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду; кроме того, кривая насыщения гемоглобина кислородом имеет сигмоидную, т.е. S-образную, форму (рис. 8-16). Это означает, что при связывании первой молекулы кислорода (нижняя часть S-образной кривой, соответствующая парциальным давлениям кислорода ниже 10 мм рт. ст.), гемоглобин имеет очень низкое сродство к кислороду, тогда как при связывании следующих молекул кислорода его сродство к ним становится намного выше, о чем свидетельствует крутая часть -образной кривой.

Образование и распад оксигемоглобина

В спокойном состоянии тканям человеческого тела достаточно около 0,2 л кислорода в одну минуту, но все меняется при физической нагрузке и чем она интенсивнее, тем больше необходимого для дыхания газа запрашивают ткани. Для удовлетворения их нужд потребность в кислороде может увеличиваться в 10 – 15 раз и составлять до 2, а то и 3 литров О2 в одну минуту. Однако газообразный кислород в данном количестве никак не сможет пробраться в ткани, поскольку он почти не растворим и в воде, и в плазме, то есть, этот элемент в ткани должен доставить какой-то белок, способный соединиться с ним и решить задачу транспорта.

Читайте также:  Приказ Минздравмедпрома РФ от 31.05.96 N 222

Кровь, как биологическая среда, реализует свои функциональные обязанности по обеспечению дыхания за счет присутствия в ней сложного содержащего железо протеина – гемоглобина, физиологическая роль которого, как транспортного средства кислорода, базируется на способности Hb связывать и отдавать О2 в корреляции с концентрацией (парциальным давлением – P) данного газа в крови. Образование оксигемоглобина осуществляется в паренхиме легких, куда кислород прибывает при дыхании из воздуха окружающей среды.

Образование и распад оксигемоглобина

Процесс образования HHbO2 происходит в доли секунды (0,01 с), поскольку кровь в легких задерживается всего-то на полсекунды. Схематично и коротко образование оксигемоглобина можно представить в следующем виде:

  • Попадая в капиллярные сосуды легких, кровь обогащается кислородом, то есть, красный кровяной пигмент к своим 4 гемам присоединяет кислород – идет реакция окисления (оксигенации);
  • Кислород связывается с гемами хромопротеина при помощи координационных связей феррума (железо – Fe) и, не изменяя в данном случае валентности последнего (в геме валентность железа всегда – II), переводит его (Hb) в несколько иное состояние;
  • Гем железосодержащего протеина представляет собой активный центр, с его помощью хромопротеин в результате вышеуказанной реакции переходит в непрочный комплекс – оксигенированный гемоглобин (HHbO2), который, находясь в красных кровяных тельцах – эритроцитах, с током крови доставляется к клеткам тканей, чтобы через распад оксигемоглобина и выделения в процессе диссоциации кислорода, обеспечить их дыхание.

Таким образом, результатом реакции оксигенации становится образование оксигемоглобина, подкисление биологической жидкости, снижение ее щелочного резерва, то есть, ее умения связывать углекислоту (СО2), которое, разумеется, на тот момент снижается.

Образование и распад оксигемоглобина

Железосодержащий протеин, насытившись в легочной паренхиме кислородом и приобретя оксигенированную форму, уносит О2 к тканям, в капиллярных сосудах которых его концентрация в крови резко понижена. Там происходит распад оксигемоглобина (диссоциация), кислород уходит на тканевое дыхание, гемоглобин забирает отработанный углекислый газ, превращаясь в другую физиологическую модель – карбогемоглобин (HHbCO2), и в этом качестве отправляется в главный орган дыхания, чтобы обменять CO2 на очередную порцию необходимого организму газа.

Читайте также:  7 способов лечения осложнений кавернозного туберкулёза

Общее описание

Эхокардиография (ЭхоКГ) — это метод исследования морфологических и функциональных изменений сердца и его клапанного аппарата при помощи ультразвука.

Эхокардиографический метод исследования позволяет:

  • Количественно и качественно оценить функциональное состояние ЛЖ и ПЖ.
  • Оценить региональную сократимость ЛЖ (например, у больных ИБС).
  • Оценить ММЛЖ и выявить ультразвуковые признаки симметричной и асимметричной гипертрофии и дилатации желудочков и предсердий.
  • Оценить состояние клапанного аппарата (стеноз, недостаточность, пролапс клапана, наличие вегетаций на створках клапана и т.д.).
  • Оценить уровень давления в ЛА и выявить признаки легочной гипертензии.
  • Выявить морфологические изменения перикарда и наличие жидкости в полости перикарда.
  • Выявить внутрисердечные образования (тромбы, опухоли, дополнительные хорды и т.д.).
  • Оценить морфологические и функциональные изменения магистральных и периферических артерий и вен.

Показания к эхокардиографии:

  • подозрение на наличие приобретенных или врожденных пороков сердца;
  • аускультация сердечных шумов;
  • лихорадочные состояния неопределенной причины;
  • изменения на ЭКГ;
  • перенесенный инфаркт миокарда;
  • повышение артериального давления;
  • регулярные спортивные тренировки;
  • подозрение на наличие опухоли сердца;
  • подозрение на аневризму грудного отдела аорты.

Левый желудочек

Основные причины локальных нарушений сократимости миокарда ЛЖ:

  • Острый инфаркт миокарда (ИМ).
  • Постинфарктный кардиосклероз.
  • Преходящая болевая и безболевая ишемия миокарда, в том числе ишемия, индуцированная функциональными нагрузочными тестами.
  • Постоянно действующая ишемия миокарда, еще сохранившего свою жизнеспособность (так называемый «гибернирующий миокард»).
  • Дилатационная и гипертрофическая кардиомиопатии, которые нередко также сопровождаются неравномерным поражением миокарда ЛЖ.
  • Локальные нарушения внутрижелудочковой проводимости (блокада, синдром WPW и др.).
  • Парадоксальные движения МЖП, например при объемной перегрузке ПЖ или блокадах ножек пучка Гиса.

Правый желудочек

Наиболее частые причины нарушения систолической функции ПЖ:

  • Недостаточность трехстворчатого клапана.
  • Легочное сердце.
  • Стеноз левого атриовентрикулярного отверстия (митральный стеноз).
  • Дефекты межпредсердной перегородки.
  • Врожденные пороки сердца, сопровождающиеся выраженной легочной артериальной гортензией (например, ДМЖП).
  • Недостаточность клапана ЛА.
  • Первичная легочная гипертензия.
  • Острый ИМ правого желудочка.
  • Аритмогенная дисплазия ПЖ и др.

Межжелудочковая перегородка

Увеличение нормальных показателей наблюдается, например, при некоторых пороках сердца.

Правое предсердие

Определяется лишь значение КДО — объема в состоянии покоя. Значение менее 20 мл говорит об уменьшении КДО, показатель больше 100 мл свидетельствует о его увеличении, а КДО более 300 мл бывает при очень значительном увеличении правого предсердия.

Читайте также:  Возможные причины возникновения копчиковой кисты

Клапаны сердца

Эхокардиографическое исследование клапанного аппарата позволяет выявить:

  • сращение створок клапана;
  • недостаточность того или иного клапана (в том числе признаки регургитации);
  • дисфункцию клапанного аппарата, в частности папиллярный мышц, ведущую к развитию пролабирования створок;
  • наличие вегетации на створках клапанов и другие признаки поражения.

Наличие в полости перикарда 100 мл жидкости говорит о небольшом накоплении, а свыше 500 — о значительном накоплении жидкости, что может приводить к сдавливанию сердца.

Нормы для взрослых

Показатели не зависят от пола пациента, поэтому у женщин и мужчин нормы идентичны. Тем не менее они могут отличаться в зависимости от возраста. Чем старше человек, тем ниже у него норма.

Сниженной считается ФВ менее 45%. При показателях в районе 40% можно заподозрить сердечную недостаточность.

Если у взрослых уровень меньше 35%, то это говорит о том, что происходят нарушения и человеку угрожает опасность. При гипертонии показатель может повышаться, в то же время у некоторых людей он может быть предельный низкий, что обусловливается физиологической предрасположенностью, но не менее 45%.

ФВ можно рассчитать по формуле: ((КДО – КСО)/КДО)*100.

Парастернальный или окологрудинный доступ КДР (сканирование по длинной оси сердца)

В практическом отношении наибольшее значение имеет ультразвуковое сердечное сканирование по длинной оси, где находится миокарда левого желудочка с визуализацией ее выносящего тракта. Именно с него начинают стандартное ультразвуковое исследование сердца. Метка датчика позволяет судить о той плоскости, в которой происходит ультразвуковое сканирование сердца. Это помогает в поисках оптимального сечения сердца с того или иного доступа, чтобы была видна миокарда левого желудочка. При проведении обследования с парастернальным доступом, датчик ставится на 2 и 5 межреберном промежутке, непосредственно возле груди. При правильном положении датчика в данной проекции, нейтральный клапан должен находиться в центре сердечного изображения, которое будет показано на мониторе, а передняя стенка аорты на том же расстоянии от датчика, что и желудочковая перегородка. Об этом необходимо помнить для самоконтроля при эхолокации сердца. Ветка датчика при этом должна быть направлена в сторону правого плеча обследуемого.

Парастернальный или окологрудинный доступ КДР (сканирование по длинной оси сердца)

ТМРЕСУРС - информационный портал традиционной медицины